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Abstract. The spin-1 Ising model with bilinear and biquadratic exchange interactions and
single-ion crystal field is solved on the Bethe lattice using exact recursion equations. The
general procedure of investigation of critical properties is discussed and a full set of phase
diagrams are constructed for both positive and negative biquadratic couplings. A comparison is
made with the results of other approximation schemes.

1. Introduction

The spin-1 Ising model with the most general up–down symmetry, known also as a Blume–
Emery–Griffiths (BEG) model has recently attracted great attention as a simple model with
rich and interesting phase structure. It was originally introduced [1] in order to explain the
phase separation and superfluidity in the3He–4He mixtures and later developed to describe
other multi-component physical systems, such as metamagnets, liquid crystal mixtures,
microemulsions, semiconductors, etc.

The model is defined by the Hamiltonian

−βH = J
∑
〈ij〉

sisj + K
∑
〈ij〉

s2
i s

2
j − 1

∑
i

s2
i (1)

where si takes the values±1, 0 at each lattice site,〈ij〉 denotes a summation over all
nearest-neighbour pairs,J and K correspond to the bilinear and biquadratic interaction
constants,1 is a single-ion crystal field.

The spin-1 Ising model has been solved exactly only on a two-dimensional honeycomb
lattice in a subspace of interacting constants eK coshJ = 1 [2–4] (recently, such a solution
has been found for higher spin-Smodels as well [5–7]) but its critical properties for positive
J, K > 0 were well established by different approximation techniques [1, 8–10]. The most
interesting result here was the first occurrence (in the theoretical model) of the tricritical
point, at which the second-order phase transition line (λ-line) turns to a first-order one.

The picture is practically unchanged for negative bilinear couplingsJ < 0. On the
bipartite lattice (i.e. the lattice which can be divided into two sublatticesA and B, such
that every site belonging toA is surrounded only by sites belonging toB and vice versa)
the regionJ < 0 is mapped on the regionJ > 0 by redefining the spin directions on one
sublattice. As a result we obtain the same phase diagrams, only where the ferromagnetic
phase is replaced by the antiferromagnetic one. Hence with no loss of generality we can
consider only the caseJ > 0.
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On the other hand, the negative values of biquadratic couplingK change the situation
drastically. The regionK/J < 0 is now a subject of intense study. A new staggered
quadrupolar phase (also called antiquadrupolar) was predicted and investigated on the
square lattice by means of the mean-field approximation (MFA) and by Monte Carlo (MC)
simulations [11]. The direct first-order transition was found from the antiquadrupolar (a)
to the ferromagnetic (f) phase, but it was not confirmed by the recentMC [12] and cluster
variation method (CVM) [13] studies. Now it seems that a and f phases are always separated
in two dimensions by a disordered phase (d) and they meet only atT = 0. This direct a
↔ f transition was, however, established on a three-dimensional cubic lattice [14–16]. The
global MFA analysis [14] on this lattice also showed a number of other remarkable features,
such as doubly re-entrant behaviour at 0> K/J > −1 and a new staggered ferrimagnetic
phase which appears between the a and f phases atK/J < −1. Latter investigations
[16–20] mainly confirmed these results, however, a number of contradictions still remain.
This makes further consideration of the model interesting, especially by applying other
approximation tools.

In the present paper we consider the solution of the spin-1 Ising model on the Bethe
lattice. We review both positive and negative values of biquadratic couplingK and show
that, though we reproduce the main details of the phase diagrams obtained by other authors,
there are some essential differences, concerning the place and order of phase transitions.

The paper is organized as follows. In section 2 we introduce the model and derive
some analytical expressions including the set of exact recursion equations. The procedure
of investigation of critical properties based on these equations is described in section 3.
Resulting phase diagrams are presented and discussed in section 4. Finally, section 5 is
devoted to conclusions.

2. Model formulation

The BEG model is characterized by two order parameters, magnetizationm and quadrupolar
momentq:

m = 〈si〉 q = 〈s2
i 〉 . (2)

However, to account for the possible two-sublattice structure we actually need four
order parameters:mA,B = 〈si〉A,B and qA,B = 〈s2

i 〉A,B , whereA, B denote sublattices.
These parameters define the four different phases of theBEG model:

(i) disordered phase (d): mA = mB = 0 qA = qB

(ii) ferromagnetic phase (f): mA = mB 6= 0 qA = qB

(iii) antiquadrupolar phase (a):mA = mB = 0 qA 6= qB

(iv) ferrimagnetic phase (i): 06= mA 6= mB 6= 0 qA 6= qB .

The Bethe lattice consideration for any model is based, in some way, on one or more
exact recursion equations. We construct these equations in the following way [21]. Taking
into account the shell structure of the Bethe lattice (figure 1) one can express the partition
function Z of the model on the finiten-shell lattice in the form

Z =
∑
{s}

−βH =
∑
s0

exp(−1s2
0)[gn(s0)]

z (3)

where z is a lattice coordination number,s0 denotes the central spin andgn(s0) is a
contribution to the partition function of one lattice branch, starting from the central site
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Figure 1. Bethe lattice with coordination numberz = 3.

with fixed spin values0. The latter is readily connected withgn−1(s1):

gn(s0) =
∑
s1

exp(J s0s1 + Ks2
0s2

1 − 1s2
1)[gn−1(s1)]

z−1 . (4)

Introducing new notations:

xn = gn(+)

gn(0)
yn = gn(−)

gn(0)
(5)

and summing up over all values of central spins0 (i.e. ±1, 0) we obtain a set of two
recursion equations:

xn+1 = ϕ(xn, yn) yn+1 = ϕ(yn, xn)

where

ϕ(u, v) = e1 + eK(eJ uz−1 + e−J vz−1)

e1 + uz−1 + vz−1
. (6)

The valuesx and y have no direct physical sense, but one can express in terms ofx

andy all thermodynamic functions of interest. Thus order parameters (2) will be written in
the form

m = xz − yz

e1 + xz + yz
(7)

q = xz + yz

e1 + xz + yz
. (8)

Using equations (3)–(6) we can also write the expression for the free energy:

−βf = 1

N
ln Z (9)

in the form

−βf = ln
[
1 + e−1(xz + yz)

] + z

2 − z
ln

[
1 + e−1(xz−1 + yz−1)

]
. (10)

Note that all the above expressions are initially written for the central site of the
lattice. We generalize these expressions to other sites, assuming that they are all equivalent.
However, this assumption is valid only for the sites lying well inside the lattice. It is not
true for a site near the surface, since the surface effects are not negligible on the Bethe
lattice even in the thermodynamic limit. If we calculate directly the global free energy of
the model on the whole Bethe lattice with free boundary conditions, we shall obtain an
expression which is always analytical, and hence shall not observe any critical behaviour.
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This is a well known problem arising on the Bethe lattice [23], and if we want to reproduce
the results of the real2D and3D lattices, we must consider only the local properties of these
equivalent ‘internal’ sites. In this case the free energy is defined by (10) and does exhibit
a singular behaviour, as we shall see in the next sections.

3. Critical properties investigation

The equations (6) form an iteration sequence{xn, yn}, which in the thermodynamic limit
converges to stable fixed points. Via the expressions (7)–(10) these points completely
define the possible states of the system. The remarkable points of this approach are that
non-staggered phases are described by the single fixed points{xn, yn} → {x, y}, while the
staggered phases appear as two-cycle doubled points [22]:

{xn, yn} →
{ {xA, yA} for odd n

{xB, yB} for evenn .

This property can be explained by the fact that all sites of each individual shell of the
Bethe lattice belong to the same sublattice.

Thus, noting from (7) thatm = 0 meansx = y, we can, in our case, classify the four
mentioned phases as follows

(i) disordered phase (d):

(ii) ferromagnetic phase (f):

(iii ) antiquadrupolar phase (a):

(iv) ferrimagnetic phase (i):

x = y single fixed point

x 6= y single fixed point

x = y period doubling

x 6= y period doubling .

It is possible to obtain the full bifurcation picture, including chaos on some hierarchical
lattices [24], but not in the bipartite case (which is the Bethe lattice with nearest-neighbour
interactions). We have only first period doubling and it is well known from the theory of
iteration processes [25] that all our points of interest (i.e. stable fixed points and two-cycle
doubled points) can be found among the solutions of the set of four equations:

(i) xA = ϕ(xB, yB, J, K, 1)

(ii) yA = ϕ(yB, xB, J, K, 1)

(iii) xB = ϕ(xA, yA, J, K, 1)

(iv) yB = ϕ(yA, xA, J, K, 1) .

(11)

The physical stable solutions of this set define the pure states of the model. As a matter
of fact there is no need to solve (11) in general form. Knowinga priori the possible phases
of the model we can separate the solutions of (11) concerning the given phase. Thus the
disorderedphase (x = y, A = B) can be defined by a single equation, either (i) or (ii).
This phase is not degenerate. For theferromagneticphase (x 6= y, A = B) it is enough to
consider two equations, namely (i) and (ii), and to exclude the disordered solution. This
phase is doubly-degenerate(m ↔ −m) due to the obvious symmetry of these two equations
under the(x ↔ y) transformation. Theantiquadrupolarphase (x = y, A 6= B) again can
be found from equations (i) and (iii), after excluding the disordered solution. This phase
is two-fold degenerate because of theA ↔ B symmetry. And only for theferrimagnetic
phase do we have to consider all four equations, but they are simplified by excluding
previous solutions. The ferrimagnetic phase is four-fold degenerate due to the(x ↔ y)

and(A ↔ B) symmetry. Of course, the last two phases are also infinitely degenerate with
non-zero residual entropy.
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Further procedures can be roughly described by the following steps.
(i) The intersections of the solutions, describing the different phases, give us, generally

speaking, the points of second-order transitions.
(ii) The presence of several simultaneous solutions at the givenK, J , 1 again generally

speaking means co-existing phases and a first-order transition, which should be located by
matching free energies (10) of these phases.

(iii) The intersections of first- and second-order critical lines give the critical and
multicritical points of several types.

In figure 2 we illustrate this procedure on a simple example of the appearance of a
tricritical point. The disordered and ferromagnetic solutions of (11) are shown on a crystal
field 1 versus quadrupolar momentq plot for different fixed temperatures 1/zJ . In the
high-temperature region the d and f solutions intersect in their stable parts and this leads
to a second-order transition. At low temperature the d line does not meet the stable part
of the f line and a first-order transition takes place. A tricritical point is observed in an
intermediate situation.

4. Phase diagrams

The resulting phase diagrams for the spin-1 Ising model are constructed on the Bethe
lattice with coordination numberz = 4. As is common we plot them as distinct
constantK/J cross sections, on a temperature 1/zJ versus crystal field1/zJ plot.
We obtain eight qualitatively different diagrams in the whole range of parameter space
(figure 3).

The 0> K/J > −1 counterpart is characterized by the absence of doubled points of
the recursion sequence{xn, yn} and hence represents the non-staggered region of theBEG

model with two phases d and f. The first three phase diagrams (figure 3(a)–(c)) are well
known from the pioneer work of Blumeet al [1]. Our results agree quite well with the
general picture. The tricritical point does not appear for large positiveK/J (figure 3(a)),
since the second-order line, limiting the ferromagnetic phase from above, terminates earlier
at the critical pointE by the first-order line limiting the f phase from the right. The latter
line itself terminates at critical pointC, and in higher-temperature segments two subphases
of disordered phase with different densities co-exist. ForK/J close to 3 (figure 3(b)) we
observe a tricritical pointT at which the second-order line (λ-line) turns to a first-order one
and also the triple pointR, where three different first-order transitions meet. This structure
disappears asK/J decreases, and a simple tricritical point is seen (figure 3(c)) for K/J

close to 0 (from both positive and negative sides).
A very interesting critical phenomenon, called doubly-re-entrant behaviour, takes place

for the values−0.35 > K/J > −1 (figure 3(d)). At a fixed crystal field1/zJ the
model exhibits the disorder–ferromagnetic–disorder–ferromagnetic sequence of phases as the
temperature is lowered. The dependence of order parameters versus temperature is shown
for this region in figure 4. The doubly-re-entrant structure shrinks to a zero temperature
and atK/J = −1 only the second-order line remains, which reaches theT = 0 axes at a
point 1 = 0 (figure 3(e)).

Comparing our results with other approximations, we note the following differences.
Double re-entrance appears in our model for lower values ofK/J and continues untilK/J =
−1, hence we do not observe the internal critical point structure of the ferromagnetic phase.
This structure was found byMFA [14] and confirmed byRG studies [18], but it was also
not established byCVM [20]. Besides we would like to mention that nowhere in the region
0 > K/J > −1 do we obtain the single re-entrant part, though it was found by other authors.
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Figure 2. Graphical representation of the solutions
of equation (11) on a1 versus q plot at different
temperatures: (a) 1/zJ = 0.4, (b) 1/zJ = 0.15, (c)
1/zJ = 0.23 and constantK/J = 0. d and f are
respectively the disordered and ferromagnetic phases.
Full curves represent the stable solutions, broken curves
the unstable and non-physical solutions. The thick full
curves show the main behaviour of the system.

The two-cycle doubled solutions of (11) appear atK/J < −1, and this means the
emergence of new phases with broken sublattice symmetry.

At −3 < K/J < −1 (figure 3(f )) the antiquadrupolarphase is separated from the d
phase by a second-order line and from the f phase by a first-order one. These two curves
meet with the second-order line separating the d and f phases, at bicritical pointB. The
ferrimagneticphase lies in the low-temperature region and is separated by the second-order
line from the a phase and by a first-order line from the f phase. These two lines meet with
the a–f first-order line at critical end pointE and at pointS. The latter point is located at
T = 0, 1/zJ = K/J + 1 and describes the macroscopically degenerated ground state with
non-zero residual entropy.

As K/J decreases, the pointE approaches the pointB untill they coincide, at
K/J = −3, at the pointA (figure 3(g)), such that there is no direct transition from the a
to the f phase. ThusA is a new multicritical point at which three second-order lines and
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Figure 3. Phase diagrams of the spin-1 Ising model on the Bethe lattice with coordination
numberz = 4 at constantK/J values: (a) 5, (b) 3, (c) −0.1, (d) −0.8, (e) −1, (f ) −2.5,
(g) −3, (h) −3.5. Disordered d, ferromagnetic f, antiquadrupolar a and ferrimagnetic i phases
are present. Broken and full curves indicate, respectively, the first- and second-order transitions
andC, E, R, T , T ′S, B, A, M indicate the critical and multicritical points of different types (see
text). Some fine details are shown in the insets.

one first-order line meet. Note that the first-order i–f transitions are located at a straight
vertical line and this locusK/J = −3, 1/qJ = −2 corresponds to a zero-field three-state
antiferromagnetic Potts model with Hamiltonian

−βH = −2J
∑
〈ij〉

δsi
,sj J > 0 . (12)

At K/J < −3 the transitions from the i to the f phase in the high-temperature region
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Figure 3. Continued.

Figure 3. Continued.

become second order (figure 3(h)). As a result the new tricritical pointT ′ arises inside the
ordered region. The multicritical pointA turns to the tetracritical pointM, at which four
second-order lines meet with different slopes.

Though, in general, the last three diagrams are similar to those obtained byMFA, there
is one essential difference: in our approach the transitions from the a to the i phase are
of second order (first order inMFA), while the transitions from the i to the f phase are of
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Figure 3. Continued.

first order at least forK/J > −3 (always second order inMFA). This means, in particular,
that we observe another type of ferrimagnetic phase, which co-exists with the f phase and
is caused by instability of the a phase against spontaneous magnetization. Such a phase
was found byCVM [19, 20], but only in the high-temperature region, while it is the only
ferrimagnetic phase present in our consideration. We would also like to mention the very
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Figure 4. The dependence of order parametersm, q

versus temperature 1/zJ at a constant1/zJ = 0.099,
K/J = −0.8 in the doubly re-entrant region. Closed
and open arrows indicate respectively the places of
first- and second-order transitions.

narrow region of occurrence of the ferrimagnetic phase.

5. Conclusion

Using the exact solution on the Bethe lattice we have constructed the full set of phase
diagrams for the spin-1 Ising model for both positive and negative biquadratic coupling
K. These diagrams feature all recently found properties of the model, including doubly-re-
entrant behaviour, staggered quadrupolar and ferrimagnetic phases and a great number of
different critical and multicritical points. Thus we can talk about the validity of the Bethe
lattice approximation and summarize some advantages of this method. The quantitative
comparison of the results has not been our purpose, but the Bethe lattice solution was
shown to be more exact thanMFA [26, 27]. Besides it is quite easy to use and it provides
the analytical expression of all thermodynamic functions of interest, so complete information
about the system under the study can be obtained.

As to the mentioned disagreements, especially in the staggered region, they may be
caused by dimensionality effects [15]. The Bethe lattice is effectively infinite dimensional,
but one can successfully approximate the real lattices in different dimensions by changing
the coordination number (this was shown, in particular, in the global consideration of the
antiferromagnetic Potts model [28]). We have constructed the phase diagrams for the Bethe
lattice with coordination numberz = 4. We do not consider the simplest casez = 3 since
it leads to qualitatively different phase diagrams, similar to those which were obtained on
two-dimensional lattices (see the introduction). Our preliminary study also shows that phase
diagrams change in the case of greater coordination number. This question we are going to
clarify in further work.
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